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Stability Robustness Improvement Using Constrained
Optimization Techniques

V. Mukhopadhyay *
Joint Institute for Advancement of Flight Sciences, NASA Langley Research Center, Hampton, Virginia

In a multiloop feedback control system, stability margin improvement by singular value shaping can be achieved
with a noise adjustment procedure. A direct method for shaping the singular value spectrum using a constrained
optimization technique is described. The design algorithm minimizes a standard linear-quadratic Gaussian
performance index while it tries to satisfy minimum singular value constraints at the plant input, output, or both.
Selected parameters of a stabilizing control law are used as the design variables. The capabilities of this method
are demonstrated using a two-input two-output system, which represents a drone aircraft and its lateral attitude
control system.
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= controller matrices
= plant matrices
= plant transfer matrix
= z'th constraint
= identity matrix
= return difference matrix at plant input
= return difference matrix at plant output
= performance index

<!>„

to

<*n
tr[
E[

= controller transfer matrix
= nth loop gain perturbation in L matrix
= perturbation matrix
= order of controller
= order of plant, input, and output
= number of feedback loops
= number of constraints
= element of controller matrices
= Laplace variable
= plant input vector
= controller output vector
= plant input command
= controller input command
- plant state vector
= controller state vector
= controller input vector
= plant output vector
= sideslip angle (deg)
= elevon and rudder deflections (deg)
= nth singular value
= maximum and minimum singular value
= global minimum and desired singular value
= nth loop phase perturbation in L matrix
= roll angle and rate (deg/s)
= yaw angle and rate (deg/s)
= frequency (rad/s)
= summation frequency point
= trace of a square matrix
= expected value
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Superscripts
[ ]* = complex conjugate transpose
(') = time derivative

Introduction

S TABILITY robustness of a multiinput multioutput
(MIMO) feedback control system has been characterized

by the minimum singular value of the return difference matrix
at the plant input or output.1'2 Stability robustness improve-
ment by singular value shaping can be done using the linear-
quadratic-Gaussian (LQG) design technique, which employs
so-called fictitious noise or frequency dependent weighting
matrices.3'5 However, the resulting LQG controller is of the
same order as the plant. Also, the root-mean-square (RMS)
response cannot be used as a measure of response in a
constraint function since it contains the effect of fictitious
noise. A direct method for shaping the singular value spec-
trum using a constrained optimization technique was de-
scribed by Newsom and Mukhopadhyay.6 There selected
parameters of an existing low-order controller were used as
design variables to minimize feedback gains while satisfying a
given minimum singular-value bound at the plant input. In
general, a stability margin improvement at the plant input is
accompanied by a stability margin degradation at the plant
output and an increase in response and control activity. The
present paper describes a design procedure that combines the
method of Ref. 6 with the LQG design techniques in order to
arrive at a compromise solution using a full-order LQG con-
troller, a reduced-order LQG-type controller,7 or a low-order
conventional controller as design possibilities. The procedure
minimizes a standard LQG cost function while attempting to
satisfy minimum singular value constraints at the plant input,
or output, or at both. Additional constraints such as maxi-
mum RMS response, control surface deflection and rate, and
dynamic loads on the structure can also be imposed if desired
(see Ref. 8 for a gust load alleviation example). The capabili-
ties of the present method are tested using a two-input two-
output system which represents a drone aircraft and its lateral
attitude-control system.

System Description
Let the multiloop feedback control system shown in Fig. 1

be described by a set of constant coefficient state-space equa-
tions, expressed by Eqs. (1-6).
Plant:

X^fXs + GuU (1)

-HXf (2)
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Controller:

U' = CXC (4)

Interconnection:

U=U'+Ucom (5)

Y= Y' + V (6)coin \ /

Equation (1) represents an Ns\h order plant having N0 output
measurements Y' modeled by Eq. (2), and Nc control inputs
17. Equations (3) and (4) represent an Mth order feedback
controller driven by the output feedback Y. The plant and
controller are interconnected by Eqs. (5) and (6), which in-
clude external inputs Ucom and Vcom. Fictitious white noise
processes can be inserted to improve stability margins at these
two points.

The plant and the controller transfer matrices in the Laplace
domain G(S) and K(S) are defined as

(7)

(8)

The argument S will be dropped in the subsequent sections
for convenience. For the closed-loop system, one may write

-(I+GK)~1GK
(I+GK)~l

(I + KG)"1 KG

(9)

In the above transfer-matrix relations, the most fundamental
matrices are (7 + KG) and (7 + GK\ which govern the stabil-
ity margins at the plant input and output, denoted by 1 and 2,
respectively, in Fig. 1. A brief review of the stability margins
and their relations to the matrix singular values follows.

Stability Robustness Review
The stability robustness of multiloop systems and its rela-

tion to the singular value of the return difference matrix are
discussed in detail in Refs. 4 and 5. Singular values of a
matrix A are denned as the positive square roots of the
eigenvalues of A*A. The minimum singular value of the
return difference matrix at the plant input g(7 + KG) and the
inverse return difference matrix g(7+ (KG)~l) are measures
of stability margin at the plant input in the following sense.

Let a perturbation matrix L, whose nominal value is unity, be
introduced at the plant input, denoted by 1 in Fig. 1. It can be
shown5 that, if the nominal system is stable, then under
certain conditions the stability of the perturbed system is
guaranteed if

(10)

or

(U)

over all frequencies (S=ju).
The stability robustness can be expressed in terms of gain

and phase margins as follows. Consider a specific L matrix
which represents simultaneous gain and phase perturbations
kn and <f>n in every loop, namely

L = diag[^Mexp(y<|>w)],« = l ,2. . .7SrL ,^>0 (12)

At the nominal conditions, kn = 1 and <J>n = 0 for all NL (i.e.,
L = 7). The stability conditions [Eqs. (10) and (11)] can be
represented graphically,1'2 as shown in Fig. 2 by the solid line
and dashed line, respectively. From the appropriate minimum
singular values, one can obtain the minimum range of varia-
tion of the gain kn and the phase <f>n at the plant input within
which the system is guaranteed to be stable. Since the in-
equalities of Eqs. (10) and (11) are conservative conditions,
one may choose the larger of the ranges.1 Also, the actual gain
and phase margins can be higher than those obtained from
Fig. 2.

If the perturbation is introduced at the plant output de-
noted by 2 in Fig. 1, then the guaranteed stability conditions
are similar to the inequalities of Eqs. (10) and (11), except that
all KG terms in the equations and in Fig. 2 are replaced by
GK. For a single-input single-output (SISO) system, the terms
KG and GK are scalar functions of frequency co and hence
KG = GK for all frequencies. Consequently, the stability

0(1 + KG)
0(1+ KG")

-18-16-14-12-10 -8 - 6 - 4 - 2 0 2 4 6 8 10 12 14 16 18
Gain margin kn, dB

Fig. 2 Universal diagram for gain-phase margin evaluation.
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Fig. 1 Block diagram of a multiloop feedback control system. Fig. 3 Simplified block diagram of the optimization scheme.
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margins are the same at all points in the loop. However, a
MIMO system with a good stability margin at the plant input
may have a poor stability margin at the plant output. It is
desirable to have good margins at both these locations, and
small perturbations at either input or output should not
destabilize the system. In Refs. 3-5, a so-called fictitious noise
adjustment procedure was described to improve stability
margins at the plant input or output. This technique is very
useful in arriving at robust LQG controllers for a MIMO
feedback control system. The robust controllers obtained by
this technique can be improved by the following constrained
optimization scheme. A detailed description of this scheme
without any constraints may be found in Ref. 7, where full-
and reduced-order controller design for a flutter suppression
problem was presented.

Optimization Scheme
A simplified block diagram of the optimization scheme is

shown in Fig. 3. The basic objective of the control-law synthe-
sis scheme is to find the values of the matrices A, B, and C in
Eqs. (3) and (4) which represent a controller or a dynamic
compensator for a stable closed-loop system, such that a
performance index is minimized and a set of inequality con-
straints are satisfied. The performance index and constraints
are defined next. It is assumed that all external inputs Ucom
and Vcom are stochastic white-noise processes and all re-
sponses are defined by their RMS values. The uncorrelated
noise intensity matrices of Ucom and Vcom are denoted by Ru
and Rv, respectively.

Performance Index
The performance index is in the standard LQG form,

defined by a weighted sum of the steady state RMS values of
the closed-loop plant and controller output

(13)

which can be computed by solving a steady-state Lyapunov
equation of order (Ns + M). The gradients of the performance
index can be computed by solving an adjoint Lyapunov
equation of the same order (the details are available in Ref. 7).
In order to visualize the role of each noise intensity matrix
and weighting matrix in shaping the singular values of differ-
ent transfer matrices shown in Eq. (9), the performance index
in Eq. (13) can be expressed as

KG) 1K. By the same argument, minimizing / would increase
stability margins at the plant output. Increasing Rv also has
the effect of rapid attenuation properties or reduced band-
width because of the term (I+KG)~1K. The weighting
matrices Ql and Q2 also play similar roles, as explained in
Refs. 3-5.
Constraints

In the constrained minimization approach, the performance
index / is minimized by changing the design variables p
subject to the inequality constraints

g i ( p ) may represent a constraint on the minimum singular
value a(I+KG) or a(I+GK), or on maximum RMS re-
sponse.
Constraints on Singular Value

Let us assume that the minimum singular value a(/+ KG)
of a stable system is aM, as shown in Fig. 4. It is desired to
increase the minimum singular value to a higher level denoted
by the line qD. Two types of lower bounds are imposed in this
paper. The type A denotes a constant aD. The type B denotes
a frequency dependent fp(co), where the singular values are
required to attenuate to unity after a specific break frequency.
The selection of an achievable ^(co) is based on engineering
experience and judgment, depending on the control power and
response limitations, since control power may be wasted in
designing a compensator to satisfy a tight bound with high
<yD(o>). Moreover, because of the conservative nature of the
singular value measures, inability to obtain such a compensa-
tor does not necessarily imply a robustness problem.

The constraint function gt(p) is basically a cumulative
measure of the vertical distance between OD(U) and a (14- KG)

Minimize J = E (Y/T Q1 Yx + U'T Q2 IT) ss

Subject to
1 N r „ ' n

At input g = _ max [0, |SD1 -o (I + KG) j n ] < 0_
n=1

N1
At output g2 = jq Z max [0, |0D2- 00+GK) | n l <0

also g3= E(YD /YD M A X)2-1<0

g(i+KG)
or

9(I + GK)

1.0

0.5
I ~ T ~"

! , lgM,
Type B

0.1 con1.0 10.0 100.0 0.1 1.0con10.0 100.0
(0 Rad/sec (o Rad/sec

Fig. 4 Geometric description of the cumulative constraints on the
minimum singular values q(I + KG) and g(/ + GK).

(14)
For clarity, the plant disturbance is not included in the
formulation shown here. However, it is included in the com-
putations and contributes to the performance index. From Eq.
(14), it can be seen that increasing Ru relative to Rv imposes
more weight on the first and third terms in Eq. (14), and
minimizing J can be interpreted as reducing the general
magnitude of (I + KG)~1KG and (/ + GK)~1G. Since
(/+ KG)~1KG = [/+ (KG)'1]'1 and (I + GK)~1G
= G(I+KG)~l, the minimum magnitudes of [I+(KG)~l]
and (7+ KG) are increased as a consequence. This increases
stability margins at the input. Similarly, increasing Rv relative
to Ru imposes more weight on (I+GK)~1GK and (/ +
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- Îcon,

^~V2
com

Fig. 5 Block diagram of a drone lateral attitude control system.
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(16)

or a(7 + GK), as shown in Fig. 4, and is defined as

i N ' .

N

(17)

The summation is taken over a large number of frequency
points cow, and the spacing of the frequency points in a
frequency range is left to the designer, depending on the
specific problem. The objective is to minimize (preferably
reduce to zero) the shaded area below the a/>(co) line by
satisfying the inequality constraint of Eq. (15). The expres-
sions for the singular values and their gradients with respect
to the design variables are analytically obtained, as described
in Ref. 6. Constraints based on Eq. (11) were not used since
they are complementary to Eq. (10) and would have added
unnecessary computational burden without tangible improve-
ment in results.
Constraint on RMS Response

In the constrained design approach, instead of lumping all
the responses in the performance index /, the designer can
choose individual responses as a set of inequality .constraints

i = 2 or (18)

where Yd is the RMS design response, FJmax is the maximum
allowable RMS value, and Ng is the total number of in-
equality constraints. The response constraints and their gradi-
ents with respect to the design variables are analytically
obtained by solving a set of Lyapunov equations.

General purpose optimization software^ which employs the
method of usable-feasible directions is used to search for the
controller design variables that minimize/ subject to gj(p)
< 0. The method uses the performance index and constraint
gradient information to determine a parameter move direction
and a scalar multiplier in the usable-feasible direction in order
to satisfy the constraints. During the linear search in the
usable-feasible direction, the eigenvalues are monitored to
prevent the system from becoming unstable. The method also

employs a relaxation technique, where only the constraints
close to the g, = 0 boundary are activated in each iteration. It
seems to work well when the nominal system does not satisfy
the constraints.

Numerical Results
Numerical results are presented for a two-input two-output

system that represents a drone aircraft with a lateral attitude
control system. A block diagram of the system is shown in
Fig. 5. The sixth-order plant state vector is defined as

The plant matrices F,GU, and H, as defined in Eqs. (1) and
(2), were presented in Refs. 1, 2, and 6. The eigenvalues of the
nominal open-loop system are -0.03701, 0.1889 +/L.058,
-3.25, -20, and -20. The unstable complex eigenvalue
represents the Dutch-Roll mode. The plant input position 1 is
defined at the entry point to the elevon and rudder actuators,
denoted by U± and U2 in degrees. The plant output position 2
is defined at the roll rate and yaw rate sensor outputs, denoted
by Yl and Y2 in degrees per second.

Design of Full-Order LQG Controller
In this section, the objective is to demonstrate the ability to

shape the minimum singular value by adjusting the noise-
intensity matrices and to illustrate them with the singular-value
plots at the plant input and output, presented in Figs. 6 and 7
for a full-order LQG controller. The noise intensity matrices
used in the design are shown beside each plot and in Table 1
and are designated as designs 1 to 6. In all these designs, the
weighting matrices are Ql = 7 and Q2 = 0.57. The full-order
LQG controllers are obtained by solving the standard Kalman
filter and controller Riccati equation to obtain the filter gain
matrix B and C, respectively. The matrix A is given by
A = (F-BH+ GUC). In designs 1 to 3, Ru - /, and Rv takes
the values 100.07, /, and 0.017, respectively. The resulting
singular values are plotted in Fig. 6. In design 1, with the high
value of Rv, the minimum a(7+ KG) = 0.15 and a(7 + GK)
= 0,83. Most of the stability robustness is at the plant output.
The singular values also have rapid attenuation at higher
frequencies. In design 2, with Rv = 7, the minimum a (I +
KG) = 0.2 and a(7 + GK) = 0.5. When Rv is lowered to 0.017
in design 3, most of the stability robustness is achieved at the
plant input. There is substantial loss of attenuation at higher

Table 1 Summary of design parameters and rms responses

RMS Response to unit rms noise at Ul

Design
no.
1
2
3
4

5

6

7

8

9

Input noise
intensity,

•*.„'iii
10001

f 1 1I 100 J

[° o l
1° o ]
[° o]
1° o ]

Sensor noise
intensity,v

1001
I

0.011
I

[1 1
I 10J

[° o]

[° o ]

[° o l
[ -1

o l

Order of
controller

6
6
6
6

6

6

3

3

3

Design
procedure3

LQG
LQG
LQG
LQG

LQG

0(A)

T

0(A)

0(*)

0^(1+ KG) <
0.15
0.20
0.53
0.68

0.33

0.40

0.17

0.22

0.26

1^(1 +GK)
0.83
0.50
0.10
0.05

0.25

0.38

0.10

0.40

0.22

Side
slip, ft
0.27
0.11
0.11
0.09

0.07

0.02

0.16

0.03

0.08

Roll
rate, <£

2.69
1.68
1.30
1.19

1.24

1.27

1.56

1.48

1.46

Yaw
rate, $
0.59
0.21
0.24
0.21

0.20

0.13

0.19

0.14

0.14

Elevon
defl.,

*i..
3.37
3.43
3.26
3.14

3.24

3.31

3.26

3.59

3.25

Rudder
defl.,

82
0.36
0.25
0.59
6.53

0.45

0.22

0.36

0.71

0.12

aO(/4) = Optimization (type A constraint). O(B) = Optimization (type B constraint). T = Truncation of design 6.
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frequencies. Note that the ratio of Ru to Rv is the main factor
in these noise adjustment procedures. In design 4, shown in
Fig. 7, the stability margin at the input is increased further
using Ru"= 10007 and Rv = 7. The effect of unequal noise
intensity in each loop is investigated in design 5, which uses
Ru = diag[l 100] and Rv = diag[l 10], imposing more uncer-
tainty in the rudder channel. The minimum singular value plot
shown in Fig...7 indicates that the minimum g(7+ KG) is 0.33
and the minimum q(I -f GK) is 0.25, and that both have good
high frequency attenuation. This design is used as the starting
point for testing the present constrained optimization design
procedure to improve stability robustness at both the plant
input and output. In these designs, the weighting matrices Ql
and Q2 are the same as before. The noise intensity matrices
Ru and Rv are set to zero. The system only contains a unit
RMS white noise input at the elevon actuator. All the ele-
ments of the matrices B and C are chosen as design variables.
The minimum desired singular value QD = 0.45 is chosen to
constrain q(7 + KG) and g(/ + GK) at the plant input and
output, respectively. A type 'A' constraint is used in designs 6
and 8 and a Type (B' constraint is used in design 9. Figure 4
shows the exact shape of the constraint qD(w) imposed on the
singular values q(I+ KG) and g(/ + GK). The frequency
ranges from 0.1 to 100 rad/s, beyond which both KG and GK
attenuate to zero for all designs. All high-frequency uncertain-
ties are assumed to be above 100 rad/s. In the cumulative
constraints of Eqs. (16) and (17), the frequency points are
uniformly chosen as 50 divisions per decade. In all the design
cases, the optimization cycle was stopped after five iterations,
since more iterations usually resulted only in marginal im-
provements.

In design 6, the full-order controller obtained in design 5
was optimized. After five iterations, the minimum singular
values are reshaped, as shown in Fig. 7. The minimum values

g(| + KG) Plant input 2(H-GK) Rant output
1.0

100
100 0.5 -

Design no. 1

' -f
o

1.0

1.0J0.5

Design no. 2 Q

1.0
1 0.01

1 )[ 0.01
Design no. 3

0.5

0.1 1.0 10.0100.00.1 1.0 10.0 100.0
Rad/sec Rad/sec

Fig. 6 Singular value shaping by noise adjustment (full order con-
troller).

Ru
iooo

1000 I I 1

Design no. 4

1 1
100] [ 10

Design no. 5

(Constrained
optimization of
design 5)

Design no. 6

g (| + KG) Plant input ° (I + GK) Plant output

0.1 1.0 10.0 100.00.1 1.0 10.0 100.0
Rad/sec Rad/sec

Fig. .7 Singular value shaping by noise adjustment and constrained
optimization (full order controller).

of q(I+KG) and q(I+GK) are increased from 0.33 and
0.25 to 0.4 and 0.38, respectively. Thus the present con-
strained optimization procedure is able to improve stability
robustness at both input and output. However, the improve-
ment is at the cost of some loss of high frequency attenuation
at the input. The open- and closed-loop eigenvalues are shown
in Table 2. The eigenvalues and transient response plots (not
presented here) indicate adequate damping of the Dutch roll,
heading^ and roll modes for a drone aircraft.
Design of Reduced-Order Controller

The next three designs, designated as designs 7 to 9 in Table
1 represent results of an attempt to obtain reduced-order
controllers, starting from design 6 using truncation and then a
constrained optimization technique. First, a third-order con-
troller is obtained from controller 6, retaining only the second,
third, and sixth states, which correspond to the roll rate, yaw
rate, arid rudder actuator states. In Table 1, this is designated
at design 7. The fact that such a truncated controller can
stabilize the system is a manifestation of the stability robust-
ness of design 6. The corresponding miniriium singular value
plots of (/+ KG) and (/+ GK) are shown in Fig. 8. The
minimum values of q(I+KG) and a(/+ GK) are 0.17 and
0.1, respectively. To improve its stability robustness, the pres-

Table 2 The plant eigenvalues for open- and closed-loop system

Closed-loop

Mode
Spiral
Dutch roll
Roll
Actuator
Actuator

Open-loop
-0.03701

0.1889 +71.058
-3.25

-20
-20

Design 6
-0.04662
-1.1887+71.752
-3.56

-19.98
-20.474

Design 9
-0.202
-0.835 ±71.203
-7.68

-20.06+71.714

0(1 +KG) Plant input o(| + GK) Plant output

(Truncated 3rd 1.0
order control
law from

Design no. 7

(Optimized with 1-°
type A
constraint) °'5

Design no. 8

(Optimized with 1-°

0.5
type B
constraint)

Design no. 9
1.0 10.0 100.0 0.1 1.0 10.0 100.0
Rad/sec Rad/sec

Fig. 8 Singular value shaping by constrained optimization (third order
controller).

2.0 r

Fig. 9 Normalized performance index and constraints variation with
iteration (design 6).
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ent constrained optimization procedure is applied with Type
*A\ and Type 1B* constraints. The results are designated as
designs 8 and 9 in Table 1. The B and C matrices in Eqs. (3)
and (4) are the design variables. After five iterations, the
minimum singular values o(I + KG) and q(I + GK) are re-
shaped, as shown in Fig. 8. This represents a moderate im-
provement at the plant input and output. The improvement is
at the cost of some loss of high-frequency attenuation.

The numerical examples indicate that an increase in the
minimum singular value at the plant input is always accompa-
nied by a decrease in the minimum singular value at the plant
output and vice versa. Using the present procedure, the
minimum singular values can be increased at both plant input
and output, but only to a limited extent. This is due to the
intrinsic relations between q(I+KG) and g(/-f GK), as
discussed in Refs. 4 arid 5.
RMS Response

The RMS response of the system for a unit RMS noise at
the plant input U-^ was computed using coyariance analysis.
The RMS side slip ft, roll rate <£, yaw rate ^, and elevon and
rudder deflections 8l9 829 are presented in Table 1. The gen-
eral trend in designs 1 to 6 is a progressive reduction of the
RMS responses of /?, <>, and i£, while 8l and 82 remain more
or less the same. Designs 6 and 8 have very low side-slip
response. In designs 7 to 9, the controller order reduction
through truncation and reoptimization did not result in a
significant increase in responses when compared to design 6.
The design software has the provision of treating each of these
responses as individual constraints instead of lumping them in
the performance index. The variation of the normalized per-
formance index and constraints on singular values at the plant
input and output is shown in Fig. 9 for design 6. The RMS
responses and weighting matrices indicate that U and Y
contribute roughly equally to the performance index J. After
the first iteration, g2 is nearly satisfied with a slight increase
in /. After the second iteration, gl is also reduced at the cost
of increased /. During iteration four, the algorithm attempts
to minimize the performance index / by slightly violating the
second constraint g2 to reach a compromised solution. The
convergence patterns for designs 8 and 9 are similar.

Conclusions
This paper describes a design methodology that uses con-

strained optimization techniques to improve the stability

margins of a muitiloop system at both the plant input and
output, while mininuzing a standard linear-quadratic-Gaus-
sian performance index. The capabilities of the method are
demonstrated using a two-input two-output system which
represents a drone aircraft and its lateral attitude control
system. Both full-order and reduced-order controllers were
designed for stability robustness at both input and output.
The examples show that the constrained optimization proce-
dure can be used in conjunction with the noise adjustment
procedure to improve the stability margin at the plant input,
or plant output, or, to a limited extent, at both. Additional
studies are necessary to simultaneously improve stability
margins and shape the transient response.
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