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Stability Robustness Improvement Using Constrained
Optimization Techniques

V. Mukhopadhyay *
Joint Institute for Advancement of Flight Sciences, NASA Langley Research Center, Hampton, Virginia

In a multiloop feedback control system, stability margin improvement by singular value shaping can be achieved
with a noise adjustment procedure. A direct method for shaping the singular value spectrum using a constrained
optimization technique is described. The design algorithm minimizes a standard linear-quadratic Gaussian
performance index while it tries to satisfy minimum singular value constraints at the plant input, output, or both.
Selected parameters of a stabilizing control law are used as the design variables. The capabilities of this method
are demonstrated using a two-input two-output system, which represents a drone aircraft and its lateral attitude

control system.

Nomenclature
, B,C = controller matrices
,G,, H = plant matrices

= plant transfer matrix

= ith constraint

= identity matrix

[I + KG] = return difference matrix at plant input
[I + GK] = return difference matrix at plant output

~E Q)

J = performance index

i =1

K = controller transfer matrix

k, = nth loop gain perturbation in L matrix
L = perturbation matrix

M = order of controller

N,, N,, N, = order of plant, input, and output

N, = number of feedback loops

N, = number of constraints

)4 = element of controller matrices

S = Laplace variable

U = plant input vector

U’ = controller output vector

Uiorm = plant input command

Veom = controller input command

X, = plant state vector

X, = controller state vector

Y = controller input vector

Y’ = plant output vector

B = sideslip angle (deg)

8,,68; = elevon and rudder deflections (deg)

s, = nth singular value

G,0 = maximum and minimum singular value
gy, 0p = global minimum and desired singular value
b, = nth loop phase perturbation in L matrix
$, ¢ = roll angle and rate (deg/s)

¥, ¢ = yaw angle and rate (deg/s)

) = frequency (rad /s)

w, = summation frequency point

tr[ ] = trace of a square matrix

E[] = expected value
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Superscripts
[1* = complex conjugate transpose
O) = time derivative

Introduction

TABILITY robustness of a multiinput multioutput

(MIMO) feedback control system has been characterized
by the minimum singular value of the return difference matrix
at the plant input or output.l”? Stability robustness improve-
ment by singular value shaping can be done using the linear-
quadratic-Gaussian (LQG) design technique, which employs
so-called fictitious noise or frequency dependent weighting
matrices.>~> However, the resulting LQG controller is of the
same order as the plant. Also, the root-mean-square (RMS)
response cannot be used as a measure of response in a
constraint function since it contains the effect of fictitious
noise. A direct method for shaping the singular value spec-
trum using a constrained optimization technique was de-
scribed by Newsom and Mukhopadhyay.® There selected
parameters of an existing low-order controller were used as
design variables to minimize feedback gains while satisfying a
given minimum singular-value bound at the plant input. In
general, a stability margin improvement at the plant input is
accompanied by a stability margin degradation at the plant
output and an increase in response and control activity. The
present paper describes a design procedure that combines the
method of Ref. 6 with the LQG design techniques in order to
arrive at a-compromise solution using a full-order LQG con-
troller, a reduced-order LQG-type controller,” or a low-order
conventional controller as design possibilities. The procedure
minimizes a standard LQG cost function while attempting to
satisfy minimum singular value constraints at the plant input,
or output, or at both. Additional constraints such as maxi-
mum RMS response, control surface deflection and rate, and
dynamic loads on the structure can also be imposed if desired
(see Ref. 8 for a gust load alleviation example). The capabili-
ties of the present method are tested using a two-input two-
output system which represents a drone aircraft and its lateral
attitude-control system.

System Description

Let the multiloop feedback control system shown in Fig. 1
be described by a set of constant coefficient state-space equa-
tions, expressed by Egs. (1-6).

Plant: -

X,=FX,+GU (1)
Y’ = HX, (2
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Controller:
X,=AX,+ BY (3)
U =CX, 4
Interconnection:
U=U'+ Ugy &)
Y=Y"+V . ’ (6)

Equation (1) represents an Nth order plant having N, output
measurements ¥’ modeled by Eq. (2), and N, control inputs
U. Equations (3) and (4) represent an Mth order feedback
controller driven by the output feedback Y. The plant and
controller are interconnected by Egs. (5) and (6), which in-
clude external inputs U, and V.. Fictitious white noise
processes can be inserted to improve stability margins at these
two points.

The plant and the controller transfer matrices in the Laplace
domain G(S) and K(S) are defined as

Y'(S)=H(IS-F) 'GU(S) =G(S)U(S) (7)

U'(S)=C(IS-A4)'BY(S) = —K(S)¥(S) (8)

The argument S will be dropped in the subsequent sections
for convenience. For the closed-loop system, one may write

, (I+GK)'¢  —(I+GK) 'GK

y | | u+e6x)’'c (I+GK)™} UCOM}

g' | —r+k6) k6 -(1+k6) 'K {VCOM
(I+KG)™ ~(I+KG) 'K

©)

In the above transfer-matrix relations, the most fundamental
matrices are (I + KG) and (I + GK), which govern the stabil-
ity margins at the plant input and output, denoted by 1 and 2,
respectively, in Fig. 1. A brief review of the stability margins
and their relations to the matrix singular values follows.

Stability Robustness Review

The stability robustness of multiloop systems and its rela-
tion to the singular value of the return difference matrix are
discussed in detail in Refs. 4 and 5. Singular values of a
matrix A are defined as the positive square roots of the
eigenvalues of 4*4. The minimum singular value of the
return difference matrix at the plant input 6(J + KG) and the
inverse return difference matrix ¢(f + (KG)™!) are measures
of stability margin at the plant input in the following sense.

Need () g(1+KG) > gpql(w)
@ 9U+GK 2 gp,lw)

Also
Yp<Y

omax BMS)

Fig. 1 Block diagram of a multiloop feedback control system.
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Let a perturbation matrix L, whose nominal value is unity, be
introduced at the plant input, denoted by 1 in Fig. 1. It can be
shown® that, if the nominal system is stable, then under
certain conditions the stability of the perturbed system is
guaranteed if

(L' ~1I)<g(I+KG) (10)

F(L-I)<o(I+(KG)™) (11)

over all frequencies (S = jw).

The stability robustness can be expressed in terms of gain
and phase margins as follows. Consider a specific L matrix
which represents simultaneous gain and phase perturbations
k, and ¢, in every loop, namely

L= diag[ K exp( j$,)], n=1,2... N, k,>0 (12)

At the nominal conditions, k, =1 and ¢, =0 for all N; (ie,
L=1). The stability conditions [Egs. (10) and (11)] can be
represented graphically,’? as shown in Fig. 2 by the solid line
and dashed line, respectively. From the appropriate minimum
singular values, one can obtain the minimum range of varia-
tion of the gain k, and the phase ¢, at the plant input within
which the system is guaranteed to be stable. Since the in-
equalities of Egs. (10) and (11) are conservative conditions,
one may choose the larger of the ranges.! Also, the actual gain
and phase margins can be higher than those obtained from
Fig. 2.

If the perturbation is introduced at the plant output de-
noted by 2 in Fig. 1, then the guaranteed stability conditions
are similar to the inequalities of Egs. (10) and (11), except that
all KG terms in the equations and in Fig. 2 are replaced by
GK. For a single-input single-output (SISO) system, the terms
KG and GK are scalar functions of frequency w and hence
KG=GK for all frequencies. Consequently, the  stability
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Fig. 2 Universal diagram for gain-phase margin evaluation.
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Fig. 3 Simplified block diagram of the optimization scheme.
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margins are the same at all points in the loop. However, a
MIMO system with a good stability margin at the plant input
may have a poor stability margin at the plant output. It is
desirable to have good margins at both these locations, and
small perturbations at either input or output should not
destabilize the system. In Refs. 3-5, a so-called fictitious noise
adjustment procedure was described to improve stability
margins at the plant input or output. This technique is very
useful in arriving at robust LQG controllers for a MIMO
feedback control system. The robust controllers obtained by
this technique can be improved by the following constrained
optimization scheme. A detailed description of this scheme

without any constraints may be found in Ref. 7, where full-

and reduced-order controller design for a flutter suppression
problem was presented.

Optimization Scheme

A simplified block diagram of the optimization scheme is
shown in Fig. 3. The basic objective of the control-law synthe-
sis scheme is to find the values of the matrices 4, B, and C in
Egs. (3) and (4) which represent a controller or a dynamic
compensator for a stable closed-loop system, such that a
performance index is minimized and a set of inequality con-
straints are satisfied. The performance index and constraints
are defined next. It is assumed that all external inputs U,
and ¥V, ~are stochastic white-noise processes and all re-
sponses are defined by their RMS values. The uncorrelated

noise intensity matrices of U, and V, are denoted by R,
and R, respectively.

Performance Index

The performance index is in the standard LQG form,
defined by a weighted sum of the steady state RMS values of
the closed-loop plant and controller output

J=E[Y7Q,y'+ U'TQ,U’] (13)

which can be computed by solving a steady-state Lyapunov
equation of order (N, + M). The gradients of the performance
index can be computed by solving an adjoint Lyapunov
equation of the same order (the details are available in Ref. 7).
In order to visualize the role of each noise intensity matrix
and weighting matrix in shaping the singular values of differ-
ent transfer matrices shown in Eq. (9), the performance index
in Eq. (13) can be expressed as

J=% Ow{Zoi[Ql(I-F GK)"'GR,]
+ Yo |01+ 6K)'GKR,|

+ Y0, 0,(1+KG) 'KGR, |

+Xo[0.(1+ KG)_lKR,,]}dw (14)

For clarity, the plant disturbance is not included in the
formulation shown here. However, it is included in the com-
putations and contributes to the performance index. From Eq.
(14), it can be seen that increasing R, relative to R, imposes
more weight on the first and third terms in Eq. (14), and
minimizing J can be interpreted as reducing the general
magnitude of (7 + KG)"'KG and (I + GK)'G. Since
(I + KG)"'KG =[I+ (KG)™*1"! and (I + GK) G
= G(I + KG)™!, the minimum magnitudes of [I+ (KG)™!]
and (I + KG) are increased as a consequence. This increases
stability margins at the input. Similarly, increasing R, relative
to R, imposes more weight on (I+ GK) 'GK and (I+
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KG)K. By the same argument, minimizing J would increase
stability margins at the plant output. Increasing R, also has
the effect of rapid attenuation properties or reduced band-
width because of the term (I+ KG) 'K. The weighting
matrices Q; and Q, also play similar roles, as explained in
Refs. 3-5.

Constraints
In the constrained minimization approach, the performance
index J is minimized by changing the design variables p
subject to the inequality constraints
g(p) <0, i=12...N, (15)
g;(p) may represent a constraint on the minimum singular

value o(I+ KG) or g(I+ GK), or on maximum RMS re-
sponse.

Constraints on Singular Value

Let us assume that the minimum singular value ¢(I + KG)
of a stable system is g,,, as shown in Fig. 4. It is desired to
increase the minimum singular value to a higher level denoted
by the line g;,. Two types of lower bounds are imposed in this
paper. The type A denotes a constant g;,. The type B denotes
a frequency dependent oj(w), where the singular values are
required to attenuate to unity after a specific break frequency.
The selection of an achievable g, (w) is based on engineering
experience and judgment, depending on the control power and
response limitations, since control power may be wasted in
designing a compensator to satisfy a tight bound with high
op(w). Moreover, because of the conservative nature of the
singular value measures, inability to obtain such a compensa-
tor does not necessarily imply a robustness problem.

The constraint function g;(p) is basically a cumulative
measure of the vertical distance between g, () and o(I + KG)

I _ T T .
Minimize J=E( QY +U QZU)ss
Subject to N
1
input =— 9y - <
Atinput  gy= 3 max [0, {9 ol +Ka),]<o0
n=1
;N
Atoutput g, == 3 max[O, {gpp- ol +GK)}n]50
n=1
= ‘2.
also g4 E( YD/YDMAX) 1<0
a+kg 10
c(lerK
= ) 05

01®,10 100 1000 041

10w, 100 1000
®Rad/sec

@ Rad/sec

Fig. 4 Geometric description of the cumulative constraints on the
minimum singular values o(7 + KG) and o(f + GK).
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Fig. 5 Block diagram of a drone lateral attitude control system.
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or o(I+ GK), as shown in Fig. 4, and is defined as

5(r) = L [max(0.[25(0) - o(1+ K6(jon, p)])T

(16)

7\7 [max{O [UD(

l[\’]z

82(1’ )

(17)
The summation is taken over a large number of frequency
points «,, and the spacing of the frequency points in a
frequency range is left to the des1gner dependmg on the
specific problem. The objective is to minimize (preferably
reduce to zero) the shaded area below the g,(w) line by
satrsfymg the inequality constraint of Eq. (15). The expres-
sions for the singular values and their gradients with respect
to the design variables are analytically obtained, as described
in Ref. 6. Constraints based on Eq. (11) were not used since
they are complementary to Eq. (10) and would have added

unnecessary computational burden without tanglble improve-
ment in results

Constraint on RMS Response

In the constrained design approach mstead of lumping all
the responses in the performance index J, the designer can
choose individual responses as a set of inequality .constraints

gt(P)=(Ki/Ydmax)f_1SO7 Ng (18)
where ¥, is the RMS design response, ¥, is the maximum
allowable RMS value, and N, is the total number of in-
equality constraints. The response constraints and their gradi-
ents with respect to the design variables are analytically
obtained by solving a set of Lyapunov equations.

General purpose optimization software’ which employs the
method of usable-feasible directions is used to search for the
controller' design variables that minimize J subject to g,(p)
< 0. The method uses the performance index and constraint
gradient information to determine a parameter move direction
and a scalar multiplier in the usable-feasible direction in order
to satisfy the constraints. During the linear search in the
usable-feasible direction, the eigenvalues are monitored to
prevent the system from becoming unstable. The method also

i=2 or 3...

) - a(1+ 6K (jo,, D)1’
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employs a relaxatron techmque where only the constraints
close to the g; = 0 boundary are activated in each iteration. It
seems to-work well when the nominal system does not satisfy
the constramts

Numerical Results -

Numencal results are presented for a two-input two-output

system that represents a drone aircraft with a lateral attitude

control system. A block diagram of the system is shown in
Fig. 5. The srxth-order plant state vector is defined as

X,=[Bé¥¢8,28,/2] (19)

The plant matrices F,G,, and H, as defined in Egs. (1) and
(2), were presented in Refs 1,2, and 6. The eigenvalues of the
nominal open-loop system are —0.03701, 0.1889+ 71.058,
—3.25, ~20, and —20. The unstable complex eigenvalue
represents the Dutch-Roll mode. The plant input position 1 is
defined at the entry pomt to the elevon and rudder actuators,
denoted by U, and U, in degrees. The plant output position 2
is defined at the roll rate and yaw rate sensor outputs, denoted
by Y, and ¥, in degrees per second.

Design of Full-Order LQG Controller o

In this section, the objective is to demonstrate the ability to
shape the minimum singular value by adjisting the noise-
intensity matrices and to illustrate them with the singular-value
plots at the plant input and output, presented in Figs. 6 and 7
for a full-order LQG controller. The noise mtensﬂy matrices
used in the design are shown beside each piot and in Table 1
and are designated as designs 1 1o 6. In all these designs, the
weighting matrices are Q, = I and 0, =0.51. The full-order
LQG controllers ‘are obtained by solving the standard Kalman -
filter and controller Riccati equation to ob;am the filter gain
matrix B .and .C, respectively. The matrix A is given by
A=(F-BH+G,.).In designs 1'to 3, R, =1, and R, takes
the values 100.01, I, and 0.017, respect.rvely The resultmg
singular values are plotted in Fig. 6. In design 1, with the high
value of R,, the minimum ¢(J + KG) = 0.15 and o(I + GK)
= 0.83. Most of the stability robustness is at the plant output.
The singular values' also have rapid attenuation at higher
frequencies. In design 2, with' R, =1, the minimum o(l+
KG)=0.2and o(1+ GK) 0.5. When R is lowered t0-0.017
in design 3, most of the stability robustness is achieved at the
plant input. There is substantial loss of attenuation at higher

Table 1 Sunrmary. of design parameters and rms responses

RMS Response to unit rms noise at U

Input noise  Sensor noise o : ‘ o Elevon Rudder
Design  intensity, intensity,  Orderof  Design - Side - Roll ~ Yaw  gefl,  defl,
no. u . controller procedure®  6.,,(7 +KG)  8y4,(1 + GK) * slip, B rate, ¢ - rate, 8 5,
1 1 1001 6 LQG 0.15 0.83 027 269 059 337 0.36
2 I 1 6 LQG 0.20 0.50 011 168 021 343 025
3 1 0.011 6 LQG 0.53 0.10 011 130 024 326 059
4 10001 6 LQG 0.68 0.05 009 119 021 314 053
1 ~ 1 : ' '

‘ L . 0.25 007 124 020 324 045

> [ 100] [ 10] § QG 033 « . 4
6 [0 0 ] [0 0 ] 6 0(4) 0.40 038 002 127 013 331 02
7 [0 o ] [0 o ] 3 T 017 010 016 156 019 326 036
8 [0 o ] [0 o ] 3 0(4) 022 0.40 003 148 014 359 071
9 [0 o ] [0 0 ] 3 0(B) 0.26 022 008 146 014 325 012

20(A4) = Optimization (type A constraint). O(B) = Optimization (type B constraint). 7 = Truncation of design 6.
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frequencies. Note that the ratio of R, to R, is the main factor
in these noise adjustment procedu.res In des1gn 4, shown in
F1g 7, the stability margin at the input is mcreased further
using R, =1000I and R,=1. The effect of unequal noise
1ntens1ty in each loop is mvestlgated in design 5, which uses
R, =diag[l 100} and R, =diag[1 10}, impesing more uncer-
tainty in the rudder channel. The minimum singular value plot
shown in Fig, 7 indicates that the minimum ¢(7 + KG) is 0.33
and the minimum o(I + GK) is 0.25, and that both have good
high frequency attenuation. This des1gn is used as the starting
point for testmg the present constrained optiniization design
procedure to improve stability robustness -at both the plant
input and output. In these designs, the weighting matrices Q,
and Q, are the same as before. The noise intensity matrices
R, and R, are set to zero. The system only contains a unit
RMS white noise input at the elevon actuator. All the ele-
ments of the matrices B and C are chosen as design variables.
The minimum desired singular value g, =0.45 is chosen to
constrain ¢(J + KG) and o(I + GK) at the plant input and
output, respectively. A type ‘4" constraint is used in designs 6
and 8 and a Type ‘B’ constraint is used in design 9. Figure 4
shows the exact shape of the constraint op,(w) imposed on the
singular values o(J+ KG) and o(J+ GK). The frequency
ranges from 0.1 to 100.rad /s, beyond which both KG and GK
attenuate to zero for all designs. All high- frequency uncertain-
ties are assumed to be above 100 rad/s. In the cumulative
constraints of Egs. (16) and (17), the frequency points are

uniformly chosen as 50 divisions per decade. In all the design -

cases, the optimization cycle was stopped after five iterations,
since more iterations usually resulted only in marginal im-
provements.

In desigh 6, the full-order controller obtained in design 5
was optxmlzed After five iterations, the minimum singular
values are reshaped, as shown in Fig. 7. The minimum values

O@+KG) Pant input 9(+GK) ~ Plant output
Ra_ Ry 10 >

(el ST

Design no. 1 0 H | 3 | L
10

1 10 T
1 10|05
Design no. 2 I J L | L
) 10 =
1 0.01 w : r
1] 00108 r
Design no. 3 O L L 1 i 1 o
01. 10 100100001 10 100 1000
Rad/sec Rad/sec

Fig: 6 Singular value shaping by noise adjustritent (full order con-
troller).

Ry Ry

] [

Design no. 4

(] ['o]

Design no. §

O(1+KG) Plant input | 9(1+GK) Plant output

{Constrained
opbv.mzatm of 05
design 5)
Desidn no. 6 0 S I} 1 1 de @)
01 10 100 100001 10 100 1000
Rad/sec Rad/sec

Fig. 7 Singular value shaping by noise adjustment and constrained

optimization (full order controller).
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of ¢(I+ KG) and g(I+ GK) are increased from 0.33 and
0.25 to 04 and 038, respectively. Thus the present con-
strained optimization procedure is able to improve stability
robustness at both input and output. However, the improve-
ment is at the cost of some loss of high frequency attenuation
at the input. The open- and closed-loop eigenvalues are shown
i Table 2. The eigenvalues and transient response plots (not
presented here) indicate adequate damping of the Dutch roll,
heading; and roll modes for a drone aircraft.

Design of Reduced-Order Controller

The next three de51gns de51gnated as designs 7 to 9 in Table
1 represent reésults of an -attempt to obtain reduced-order
controllers, starting from design 6 using truncation and then a
constrained optimization technique. First, a third-order con-
troller is obtained from controller 6, retaining only the second,
third, and sixth states, which correspond to the roll rate, yaw
rate, and rudder actuator states. In Table 1, this is designated
at design 7. The fact that such a truncated controller can
stabilize the system is a manifestation of the stability robust-
ness of design 6. The corresponding minithum singular value
plots of (I+KG) and (I+ GK) ate shown in Fig. 8. The
minhimum values of ¢(I + KG) and g(I+ GK) are 0.17 and
0.1, respectively. To improve its stability robustness, the pres-

Table 2 The plant eigenvalues for open- and closed:loop system

_ Closed-loop
Mode Open-loop Design 6 Design 9
Spiral —0.03701 —0.04662 -0.202
Dutch roll 0.1889 +,1.058 —1.1887 +,1.752 —0.835+,1.203
Roll —3.25 -3.56 —17.68
Actuator -20 ~19.98 —20.06 +1.714
Actuator -20 —20474

GI+KG) Plant input O+ GK) Plant otput

(Truncated 3d 10
order control
law from
design 6)
Design no. 7
(Optnn\zed with
type A
constraint)
Design no. 8

(Optimized with

Design no. 9 w

10 100 1000 01 10 100 1000
Rad/sec Rad/sec

Fig. 8 Singular value shaping by constrained optimization (third order
controller).

201
O-—=-0,
s o /g
Ve ~
4 O-==-0
7/
10 ==
(31/G10
1 G2/G20
0 1 2 3 4 5
lterations

Fig. 9 Normalized performance index and constraints variation with
iteration (design 6).
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ent constrained optimization procedure is applied with Type
‘A’ and Type ‘B’ constraints. The results are designated as
designs 8 and 9 in Table 1. The B and C matrices in Egs. (3)
and (4) are the design variables. After five iterations, the
minimum singular values (I + KG) and o(I+ GK) are re-
shaped, as shown-in Fig. 8. This represents a moderate im-
provement at the plant input and output. The improvement is
at the cost of some loss of high-frequency attenuation.

The numerical examples indicate that an increase in the
minimum singular value at the plant input is dlways accompa-
nied by a decrease in the minimum singular value at the plant
output and vice versa. Using the present procedure, the
minimum singular values can be increased at both plant input
and output, but only to a limited extent. This is due to the
intrinsic relations between o(/+ KG) and o(I+ GK), as
discussed in Refs. 4 and 5.

RMS Response

The RMS response of the system for a unit RMS noise at
the plant input U, was computed using covariance analysis.
The.RMS side slip B, roll rate ¢, yaw rate Y, and elevon and
rudder deflections 8,,8,, are presented in Table 1. The gen-
eral trend in designs 1 to 6 is a progressive reduction of the
RMS responses of B, ¢, and , while 8, and 8§, remain more
or less the same. Designs 6 and 8 have very low side-slip
response. In designs 7 to 9, the controller order reduction
through truncation and reoptimization did not result in a
significant increase in responses when compated to design 6.
The design software has the provision of treating each of these
responses as individual constraints instead of lumping them in
the performance index. The variation of the normalized per-
formance index and constraints on singular values at the plant
input and output is shown in Fig. 9 for design 6. The RMS
responses and weighting matrices indicate that U and ¥
contribute roughly equally to the petformance index J. After
the first iteration, g, is nearly satisfied with a slight increase
in J. After the second iteration, g, is also reduced at the cost
of increased J. During iteration four, the algorithm attempts
to minimize the performance index J by slightly violating the
second constraint g, to reach a compromised solution. The
convergence patterns for designs 8 and 9 are similar.

Conclusions

This paper describes a design methodology that uses con-
strained optimization techniques to improve the stability
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margins of a multiloop system at both the plant input and
output, while minimizing a standard linear-quadratic-Gaus-
sian performance index. The capabilities of the method are
demonstrated using a two-input two-output system which
represents a drone aircraft and its lateral attitude control
system. Both full-order and reduced-order controllers were
designed for stability robustness at both input and output.

The examples show that the constrained optlmlzatlon proce-
dure can be used in conjunction with the noise adjustment
procedure to improve the stability margin at the plant input,

or plant output, or, to a limited extent, at both. Additional
studies are mnecessary to simultaneously improve stability
margins and shape the transient response.
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